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LIOUVILLE'S EQUATION AND THE n-BODY PROBLEM

by
R. G. Langebartel
Goddard Space Flight Center

SUMMARY

The motion of a system of particles is examined on the basis
of the fundamental equation in statistical mechanics. The Dirac
delta function is used to describe systems which are discrete in
position space, velocity space, or both as degenerate cases of
continuous systems. The approximation procedure, necessitated
by the nonlinearity of the problems, is based on the use of ex-
pansions in successive derivatives of the delta function. This ap-
proach leads to sum-difference-differential equations of a novel
form for the quantities of interest, equations subject to a variety
of techniques for solution. The method is applied to the dispens-
ing and dispersion of the "West Ford Needles" belt, and to the
problem of permanence of symmetry of the configuration of a
collection of Echo-type satellites.

iii






CONTENTS

20255+ = s i
INTRODUCTION. . . . . ittt e et et e e e e et e e e eae e e e 1
THE FUNDAMENTAL EQUATION . ... ... .. ittt neenn.. 1
Example—Harmonic Oscillator. . . . . ... ... ........... 4
THE n-BODY PROBLEM .. ... .. ..ttt ittt innannas 4
Example—Two-Body Problem, Circular Orbits . . . ... ... .. 10
Example—Restricted Three-Body Problem. ... .......... 11
IMPROVEMENT ON APPROXIMATE ORBIT . .............. 12
Expansions in Terms of Delta Functions. . . .. ........... 12
Application to the Equation of Continuity. . .............. 16
WEST FORD NEEDLES—DISPENSING. . . « . vt v v v v v vt v e ea s 25
WEST FORD NEEDLES—DISPERSION. . . . . .. .. ...t .. 35
EQUALLY SPACED ECHO SATELLITES. . . . ... ... vv .. 40
References . . . . . v vt it it it e e e et ettt e e et e 55



LIOUVILLE'S EQUATION AND THE n-BODY PROBLEM

by
R. G. Langebartel
Goddard Space Flight Center

INTRODUCTION

The non-linearity of most problems in celestial mechanics usually necessitates the use of
some approximation method. The scheme outlined in the present work leads to equations of a
form rather different from those encountered in the standard procedures. The point of departure
of the method is the regarding of the particle or collection of particles as constituting a medium
in phase space subject to the fundamental collision-less equation of statistical mechanics, Liou-
ville's Equation. Such a medium is of necessity highly degenerate, so that its distribution function
will involve the Dirac delta function. An example of a classical use of such "singularity functions"
in statistical mechanics is the '""microcanonical ensemble' of Gibbs for which the degeneracy is
in the energy. However, for the celestial mechanics n-body problem the distribution function must
be taken as degenerate in both velocity and position space. Some problems (e.g., the determination
of the motion of the West Ford needles) call for a distribution function degenerate only in velocity
space. A medium of this type is not the customary "'gas' of statistical mechanics, but instead is
the ""completely incoherent medium' of Lichtenstein (Reference 1).

The first sections are preliminary in character and introduce the use of the delta functions to
describe the degenerate media. The approximation method is developed in the section devoted to
the improvement of an approximate orbit.

THE FUNDAMENTAL EQUATION

The principal condition of the density distribution function is that it satisfy Liouville's Equa-
tion, the Equation of Continuity. This means that the density of the medium throughout its motion
remains constant in phase space. The forces are assumed to be conservative, the force vector
being the negative of the gradient of the potential.

Let q, and p, be the n Hamiltonian coordinates and their conjugate momenta, and H(q,, P, t)
the Hamiltonian function. '"Phase space' is the 2n-dimensional space of points

(ql. *tty G, Pps L P, ) Let f(qk, P, t) represent the density distribution function in phase
space. Liouville's Theorem (Reference 2, p. 83; Reference 3, p. 266) asserts that
of N (oH of ﬂﬂ.) = 0
gt dp, dq,  dq, Ip, : (1)
k



This first order partial differential equation in f is the fundamental equation for this theory. If
the forces involved are purely external then the equation is linear. But if the self-gravitation of
the particles is taken into account then f enters into H through the potential function v, and the
equation becomes a nonlinear integro-differential equation which in almost every case must be
handled by some approximation procedure.

Liouville's Equation (Equation 1) can be derived directly from the Hamiltonian Equations of
Motion, but it is instructive for the case of a degenerate medium to show the equivalence of Equa-
tion 1 to the Newtonian Theory by making use of the delta function 3(x). Such a '"function' has
been employed for years but it is only relatively recently that a satisfactory theory incorporating
them has evolved (References 4, 5, and 6). Physically §(x) represents the density distribution
function of a unit mass concentrated at the origin.

If the motion of a certain system with n degrees of freedom is

a, = Q (a, p,t),
(2)
p, = P.(a, P, t)
then the phase space density function for this system is
f - b(qr—Qr‘pr_Pr) = (\(ql_Ql"'.’qn_Qn’pl_Pl’ T PaT Pn) 4 (3)

We want to show that substitution of Equation 3 into Equation 1 leads to a result equivalent to that
predicted by the Newtonian Theory. With the notation

_ aé(qs::Qs‘ ps_Ps)
6, = 3(a, - 9,)

Equation 1, for the substitution of Equation 3, takes the form

oP, aQ, apP, 9Q,
Hpkpr da, * Hkar da, )~ HQkPr Py * Q0 9Py °

T T
k

P, P, P,
- ot * HPk dq, _HQk Ip, +HQr Ontr
aQr aQr aQr
- gt * Hpk daq, _Hok ap, )~ HPr 6, = 0, 4)

k

Q|
e}



where Hpp = 32H(Q,, P,, t)/aPr dP, ; i.e., the original variables q_ and p, inH are replaced by
the functions Q. and P,. In deriving Equation 4 use is made of formulas for the multiplication of
the delta function or its derivative by another function. The particular formulas employed in this
instance are (Reference 5, p. 10)

Hy (a,, Py t)8, = qu(Qs,Ps,t)Sr “Hy . (9P t)8 T Hg 8, ~Hyo 8,

Setting the coefficients of 8 and &, to zero gives a partial differential equation system in
Q, and P, of a rather special form, a ""quasi-linear system with same principal part' (Reference 7,

r

V. I, p. 117). Its solution can be expressed as an arbitrary function of 2n functions of q_, p,, t.
These functions in the present case turn out to be precisely the Newtonian integrals of motion for
the given Hamiltonian. The coefficient of § in Equation 4 can be written in the form

M, dHy
da. " dn )"
k

and since g(x) >(x-a) = g(a)o(x~a) the s term is

That Equation 4 represents the Newtonian Theory can be verified in a much briefer fashion
by considering the special case Q, = Q,  (t), P, = P_(t), the form in which the solution to a prob-
lem in dynamics is most often sought. For Q, and P, independent of q. and p, the vanishing of
the coefficients of 5 and 8, gives immediately

i.e., P, and Q, satisfy the Hamiltonian Equations of Motion. Note that for P_ and Q, independent of
p, and q, each term in the coefficient of § in Equation 4 vanishes.

Other choices for the variables present in Q, and P, lead to certain specialized forms for the
quasi-linear system derived from the coefficients of § and 3 , in Equation 4. This permits a
choice of equations to be used for a particular problem.



Example—Harmonic Oscillator

The Hamiltonian is H = 1/2 (g +p?) and we will take Q = Q(t) and P = P(q). From Equation 4
dpP
Pgg+ta = 0,
for which P = #yc 2 -<¢. The remaining equation taken from Equation 4 is then merely
dQ -
dt ~ V912"Q2 = 0,

and the complete solution is

Q = c, sin(t—CQ),

{1 —cl sin? t—ézj = clcos(t—CQ).

The equations taken from Equation 4 under the assumption P, = P, (t),Q, = Q, ( , t) might
be easier to handle than those resulting from the assumption P, = P, (qs, t) » Q. = Q. (t) for a par-
ticular problem. Employing the former assumption rather than the latter (a sort of dual situation)
is somewhat analogous to the use of the Legendre transformation in partial differential equations

(Reference 7, V. II, p. 26).

THE n-BODY PROBLEM

The rectangular coordinates are z,, z,, z; and the corresponding velocity components Z,, Z,,
Z,; aU/azr is the negative of the force per unit mass due to the self-gravitation of the particles
themselves. F_(z_, t) is the external force per unit mass (due, for example, to the mass of a
body not taken as a part of the n-body system and regarded as not affected by the masses of the
n bodies). Liouville's Equation (Equation 1) takes the form

—Zz6z Z ‘r = 0. (5)

The density distribution function that describes the n-body system is given by

=) mafe o282 -20) < ) a s ©)

=1 a=1



In Equation 6 Er[“] and 2r[°3 are the position and velocity coordinates oi the «t particle, and z,
and Z_ are the running position and velocity coordinates throughout the space. We shall find the
form Liouville's Equation takes under the substitution of Equation 6 with the assumption that ’z“r["J
and 2}‘1 are functions of all the variables z_, z_, t, although in practice they would most likely be
restricted in this regard, often being functions of t alone. A case of some importance (already
mentioned) is that of taking ¥¥ as a function of t alone and Z,¥ as a function of both z and t,
Examples of this will be given shortly.

To obtain the density distribution, N, in position space the phase space density function, f, is
integrated over all velocity space (the concept of density here is the same as that for hydrodynamics):

o [ffearcomen,

Consequently, the potential U due to the n bodies is

- e m NG
Ve -2)7 (2 -2)2 + (2 - 2,)?

« ¢} n
m, 5(7r - ;rﬁl] . Z Er@]) dz,dz, dZ, dz, dz, dz,
= -g ezl .
(2, -72,)7
s
m, 8(z, -%8) dz, dz, az,
_ -G a=1 .

(=2 - 2.)?

ma.
[ Y258

In this final expression for u the functions %’s[“] no longer involve Z_ and z, (if they ever did) since
these have been removed by integration.




Again the following notation is employed:

25(z,-2 B, z, -2, H)

SSEI] - 8(2s —'Es[a])
] 65( ,-”,EIJ»Z,-Z,@)
534[»; = - 5 (ZZS _ Zs[a])

-This simplifies the expressions for the necessary formulas:

n 3 n 3
~ (G
If azs[] g azs[a]
gt =~ me gt 8o T My "3t Saus o
a=1 s=1 a=1 s=
n n 3 n 3
~ [ [
LA m s B - @ 27
dz a%r mg dz, s Mg dz, 3+s !
a=1 a=1 s=1 a=1 s=

Q,
O
'IN sl
1
2
il
3
I
<]
w
e
pish
[
:M
It
3
I
1)
y.%
" 5
>
n
Y
!
iM
=]
M
It
o
3
I
QU
w
N N
ey
>
w
*
@ &

a=

Special attention must be paid to the term (9U/dz,)s ¥ since the delta function changes z, into

?s@ and 9U/dz_ is not well defined for z_ = ¥ B. Actually, the particular terms in (aU/ézr)asE‘]
where this difficulty arises should be taken to be zero. The discontinuity in 9U/3z_ is such that the
limiting value of this function at the point (El["], 2,5, “z“ﬁ) in the troublesome term depends on
the direction of approach. For one set of directions the limiting value fails to be well defined, but
for the remaining directions it is well defined and turns out to be zero. Indeed, if the factor

8 (z1 - 51[‘]) is left until last in the consideration of the product. then the result is

-3 -3 B -3 B -3 d
(zl 21@)8(22 22[1)5(23 *3 ) 8(Z1_’Zvl[a]) } ZZI—;I["-]13 5(22_’52["])5(23_;3[@1])5(21_’51@) 4
1 1




with the meaning unclear. However, if the product is taken in another order a definite value is
obtained:

N¢
w

= [(22_;:2[@)2 N (23_ 7[(1])2j|3/2 5(21—}’1[6‘]) 8(22—}‘2[‘1]) 5(23_%43@]) = 5

Moreover, the term physically represents the action of the self-gravitation force of the particle
and thus plays no role in determining the motion of the system. Consequently, wherever it oc-
curs it is regarded as zero, and

Mg BEAL
=7 [k (Zk _}ka) :l

1"
=]
-
"
)
iy

In these sums, as indicated, the terms where S8 = a are to be deleted. This is a manifestation of
the vanishing of the weak functions treated above. The symbol é *° in the last term stands for the
Kronecker delta (not the Dirac delta function) and is unity for r = s and zero for r # s.



On the basis of these results Liouville's Equation in rectangular coordinates for an n-body
system is

n 3 3 n
n 3 gl 1 i
E E : 9z 1 ) > > 3(2,8 -2 B> B -2 B)
e gz, " m, |~ G Y 5/2
a=1  s=1 ) ‘ ' [; (’gk[a] - fzvk&i]) 2]
a=1 r=1 s=1 =1
Bra

5 s oF, (8. t)\oz B
o — i T T3z 57— |8
[; (%k[a] - ’fk&ﬂ)Z] ) '
n 3
3
a7 5% B N
¥ TMy gt - mazr@] azr tom, Zs[a:|
r=1
a=1 s=1
3 n
5 [“} - [l’j 07 [“]
4 ¥4 Zs R
+ m, <G mg a ,\,7@72 32 ~ F, (“i[a], th oz 55@]
l:k (Zk T2y ]
r=1 =]
fra
n 3
3
ais[“] ~ o7 @
* —ma at - ma Zra az
r<l }
a=1 s=1
3 . N
yH -3 B . 37 B
+ m_ G My ——=— - - F (?.a, t)>725—
a B 3/2 r\%i .
[Z (’zkH _?k@)q
=1 g;}l K W,
. 3
@ -y B
P Z, N B
D VARSI R N G 8 = 0.
[ (Z S ):]
B=1 « .




In the event Er[“] and 2r[“] depend only on t, Equation 7 becomes

[] [ yH > 8
__+m ZM S[GJ+ - m, Z -m, <G m % i
o D8 -y 8]
l: (%, —zk)]
e

-F (2B O 8 = 0. (8)

3+s

Inasmuch as the coefficients of 5. and 83[‘:1 are independent of z_ and Z_, the left member can
vanish only if the coefficients of the delta functions are all zero. But this means that

4z 8 N
dst = ZSE‘.] !
dz F AL
w00 m”s(?i@’t)'
B I:k ( - ) ]
Bra

the standard equations for the n-body problem.

Numerous problems are treated more advantageously in a coordinate system other than the
rectangular. Several examples will be considered here in which cylindrical coordinates are most
natural. Let these coordinates be r, 4, z and the components of velocity in these coordinate di-
rections beR, 8, Z. Liouville's Equation in cylindrical coordinates has the form (Reference 2,

p. 187)

af af ® af af 02 au Jf RO 190 af gu af  _
m+Rm+?m+Za—z+<T-ﬁ+Fr>a“ﬁ+<-T—r—9+1“>7@7+ _6_z+Fz>§—_ 0. ©)

The density distribution function representing the n-body system is

f = ZmGS(r-?’E!@—-y[a],z—’ib],R‘ﬁ@],@-@M,Z"’i@]) R

a=1

The self-gravitation potential is

ma-
Uu = -G . . _ - —— .
Za=1 }/r2+?[°]2~ 2r ¥ cos (9—5[“]) + (z—'i'["])2




Example—Two-Body Problem, Circular Orbits

In this case n = 2 and the external force is zero. Let

@ = r, B = r, 20 = i (), gl = 30 (1),

)

@ [1] = , @j [2] = wr , '2‘ [1] = ’i‘ [2] = ’ﬁ [1] = ﬁ [2] = 2 [1] = 2 [2] = 0

-  wr 1

and take r,, r,, « to be constants. This means we are assuming a density distribution function of the form

2

f = ZmQS(r—ra,G—B’H (t), z, R, ®~cr, Z) .

a=1

Substituting these into Equation 9 and making use of the relation g(x) é(x-a) = g(a) §(x-a) gives

4ot v U
T my T de 52[lJ T 52[2] +omy ‘”52[1] + m2w52[2] *omy wir, - g% 54[1]
+ 2 _g.ij 5[2]_&@.5[1]_12_6_6_5[2]_ Q_I:jg[l]_ @5[2) - 10
My, \@ I'27~ gr 4 r, 9 5 r, 90 °s M 3z %6 M2 9z %6 = 0. (10)

The subscripts on § again stand for partial derivatives. The potential function terms are

- r2 CcOos (’g[l] _9[2])

ENij Ty

sl = gn . s [

or P 2o 220, rycos (30 - 2@)]72 70

o i} 3B 30

3—284[2] - Gm, r, ry cos( 7 ) _ 84[2] i
[r12 tr?- 2r, r, cos (g[ZJ - g[l]):]

N (o pH

% 55[1] - sz ‘_jl r,sin ( . )N v 55[1]
I:rl2 + r22 ~2r, r,cos (fj[l] —5[2])]

N i (38 - 50)

U r,r; sin (@

Wgs[z] = Gm, = 3/2 55[2]

[r12 +r,2-2r, r, cos (5[2] —5[1])]
au L _
ol = 55 = 0.

Consequently, Equation 10 takes the form

ao ) i < e ) i r, - r,cos (g[l} —5[2])
(-m g7 tm,w]d t{-m, 35 +tm,w]$ +m «?r, -Gm - s [
1 dt 2 2 2 dt 2 2 1 1 2 [rlz i r22 - 2r, 1, cos (31[1] _giz])] 3/2 4

r, r, cos (5[] —5[1]) r, sin (g[l] —5’[2])
tmy{e® 1y~ Gmy . ~ ~1\] 372 54[2] cmypmy, G ~ ~rav] 372 55[1]
I:rz2 tr? ~2r, r, cos (19[2] —5[1])] [1'12 + r22 - 2r, r, cos (9[1] —9[2])] /
o r, sin (5[2] - 5[1]) 5 b . o
- m,m - - - .
2 [r 2+r?-2r,r, cos (5[2] - éﬂﬂ):l Ve (11)

2

10



The delta function manipulations used in deriving Equation 11 reduced it to a point where the coef-
ficients of all the delta functions are independent of r, 4, z, R, 9, Z; and so these terms are essen-
tially independent of each other. Consequently, in order that Equation 11 be satisfied these
coefficients must vanish. From the 32[1] and 82[2] terms it is apparent that

5[1] = wt tcy,

gl = ot tcy .

However, from the 5, terms we see it is necessary that 5l -3H@ = 0 or . Let us choosen
and take ¥ = wt , ¥@ = wt +7, The vanishing of the 8, coefficients after these substitutions gives

) 1712 _
w?r; - Gm, - s - 0.,
(r1+r2)

r,tr
2 1 2

w*r, - Gm, ‘(rl':T)a = 0.

From this it is deduced that m,r, = m; r, and that

GWI, Gm,

2 2
P (rl +r2) r1("1+"2)

w

The expressions for « can be combined into a symmetric form:

J—
_ 1/6 ymyry fmyr,
w = 3

2 V"1r2(r1 +r2) .

Thus we have obfained, by the Liouville Equation approach, the well-known result of the existence
of a solution to the two-body problem in the form of two particles revolving in circular orbits
about their common center of gravity.

Example—Restricted Three-Body Problem

In this instance n = 3. Take TH, 7@ | etc. for « = 1 and 2 to be as they were found in the
previous example, We shall try to get the straight line (''syzygy'') solution. Consequently, let us
take T® = r, (constant), 58 = wt, 88 = r,and 2B = RE = ZE = 0. Also f = f,+f,
where f, = ail m, 58 and £, = m,s ®. This partitions the density distribution function into a
part, f,, governing the motion of the two principal bodies (which already has been found to satisfy
Liouville's Equation) and a part, f,, connected with the motion of the third particle. The f, part
has to be determined, and Liouville's Equation (Equation 9) becomes an equation in f,, somewhat
simplified by the fact that f, itself satisfies Equation 9. However, despite its appearance Equation9

11



is nonlinear because of the presence of f in u. This may be indicated by writing U = u(f) = U(f, +f,).
But the functional relation of U on f is essentially that of integration, a linear operation. This
means U(f, + f,) = U(fo)+U(f,) . The equation for f, is found to be

af, af, g of, af, [ez oU(fy)]of, 9U(f,) af, oU(f,) af,
Tt "Ry *T 58 TZ25z t|T T Tar |9R - ar IR - ar IR
e 1 9U(f,)]9f, 1 9U(f,) af,  aU(f,) af, JU(f,) 9f,
*I"T T 99 |9®@ T 99 9@ r 99 a6 9z IZ

au(f,) af, dU(F,) f, (12)
~ 79z @9z " "9z 9z - 0.
The delta function representations for f, and f, reduce this to
0 1
r;tr, rg~ry ry —ry r, try
2. _ = .G Vs B - —° s = sH@ = .
éns@ ry-Gm, my |r3+r2|3 m, m, |r3-r1'3> 4 Gm m, irl_r3|3 4 Gm, m, II‘2+I'313 4 0 (13)

Equating the coefficient of 84[3] to zero gives the classical equation for r, for the straight line
solution to the restricted three-body problem:

rygtr, rg—r,

2 - —
w*r, - Gm - Gm = 0.
3 2 |r3+r213 1

- 3
[rs =1

Note that the last two terms in Equation 13, the 54[‘] and 84[2] terms, cannot be made to vanish.
This implies that the assumptions on the make-up of f, and f were too restrictive to permit an
exact solution to the three-body problem. The solution must be regarded as approximate, but in
what sense it is valid is not immediately apparent from Equation 13. A modified problem can be
formulated for which f, is an exact solution. This is done by assuming the masses of the first
two bodies so great in comparison with the mass of the third that its effect on the motion of the
first two is negligible (the "restricted three-body problem'). In the Liouville Equation approach
this is equivalent to regarding U(fo) as a given exfernal potential and setting the explicit f, in
Equation 12 (i.e. 9f/IR, 9f,/90,0f¢/0Z ) to zero. That is to say, f is merely the density distribu-
tion function for one particle moving in an external force field set up by the two unaffected
revolving bodies. The worrisome last two terms in Equation 13 do not appear, whereas the first

remains unaltered.

IMPROVEMENT ON APPROXIMATE ORBIT

Expansions in Terms of Delta Functions

This sectiondiscusses a method for determining correctionsto a given approximate orbit of a
particle or system of particles in an external force field. The procedure is based on the

12



representation of the density distribution function for the particles in the form of a series of delta
functions and their derivatives. This turns out to be essentially equivalent to employing a power
series in the differences between the true and approximate values of the coordinates and velocity
components.

Suppose the approximate orbit of a single particle is given by z_ = £_(t) and Z = Z_(t), where
Z_(t) and 2: (t) are known. Suppose further that the actual solution is representable in the form

_ ; E rlr 1'3515253
£ 0 ; 0 Z Z Z: c"l‘“zfsslszsa () 8( ’ ) ’ (14)
= 5= r3= s1= $,= s3=

where
3(r1r2r3515253) = 501) (Zl - 21) 5<r2) (z2 - 22) 5(’3) (23 - 23) B(Sl) (Zl _21) 5(52) (22 _22) 5(53) (Z3 - Z3) :

and the superscripts indicate the r, derivative, etc. (Note the different use of the superscript on
the delta functions here than in the preceding section.) On occasion it will be convenient to
use the abbreviation f = Z ¢, o (1) sCiD | et %, (t) and Er (t) be coordinates and veloc-
ity components for the rei;éctl éolution so that the exact solution to Liouville's Equation
is f =mé(z,~%,,2 -%). Thus, we shall be working with the development of this delta func-
tion for the point (%,, Z,) in the Equation 14 series of derivatives of delta functions about
the point (z,, Z,).

Expansions in series of the Equation 14 type bear certain formal similarities to expansions
in terms of orthogonal functions. In particular, the procedure for determining the coefficients in
the expansion of a given function is essentially the same in each case—multiply by certain func-
tions and integrate. In expansions like that for Equation 14 the multiplication functions are power
functions and so the coefficients are determined by "'taking moments''.

Suppose we wish to expand a given function g(z,, z,):

g(zr’ Zr) = Zcr"s's(ﬁ) (21 "71) 3(53) (23"23) - (15)

T.,S .,
7

¢, , is determined in terms of g by multiplying:

13




Then the following integration is performed:

”j (zl—El)h‘ (23—23)"3 gz, Z,) dz; -+ dZg
= Z Cris, Jl (Zl _El)hlg(rl)(zl _—2_1) dz, --- J_ (23 _23)k35(53)(23'23) dzs - (16)

The repeated integrals on the right can be evaluated through the formula (Reference 5, p. 10):

(z=-D"(z-2) = [(z-2)] 8 —rfh(z-z)"] s + (;)[h(h ~1) (z-2)"?]

= z=

§(r=2)
z

~(B)hn -1 -2y B e s (g )nt s

= (—1)*’(;)}1! $(r=h)

This is to be zero if h> r, which is indeed reflected by the fact that (ﬁ) , the binomial coefficient,
should be defined as being zero for h > r.

Consequently, upon integration
J (z-zZ) 8 (z-Z)dz = (-1) (ﬁ)h! J st (2 -Z)dz

(—1)h(£>h! BT

il

o]

(where 8,7 is the Kronecker delta: S}rl = Oforr 7 h,B},r] = 1lforr = h), since f_w §(z-%)dz = 1,
fw $(z-z)dz = f_w 8§"(z-z)dz = --- = 0. Thereupon the right side of Equation 16 becomes

h, [ T1 r h, [T2 r Ky [S3 s
; : Cros; D 1<h1> hy! 5h,l (-1 (h2> h,! Sh; e (-7 Ky k! 6k33

T.,S.
1 1

. P P
k,) M1 k! Chjhyhyk ok

e, Dy
_ (_1)h1+h2+ +hy <h > . 3

1

This supplies the necessary formula for the coefficients in the expansion (Equation 15),

b+t 1 — b 5 1k
Cha, D v hy 'k, ! JT“J(%‘%)I o (25-2) ez, 2,) dzy oo A2y (17)
and this represents the inversion of Equation 15.
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This will now be applied to the case at hand; i.e., g(¢,, Z,) = ms(2,-%,, 2, -%,) and z, = %,
Z = Zr . The differences between the true and approximate values are

r

(18)

Shok, (- hy ! : ky ! (Zl“;1+51)l]1”' (23“%3+'73)k3m5(zr_%r’zrnzr)dzl T dZg
-
Bt otk © ]
AN 3 ~ ~
- “1‘1(1 ! ) I j (Zl"Ex +c1)hl 0(21'%1)‘121 : J (23 -z +773)[(35(23“ Zs)dzs
- -

But (z-z+)" ~(z-2) = «">(z-2) , implying that the formula for the coefficients in the expansion
of m>(z,-z,.2, - Er) in terms of the differences ¢, and n_ is

h ek
Com (-1 T w oy by Ky kK
Ch,x, (t) = hy ' -oTkg T S €2 S T Tl Tl (19)

An alternative way of expressing the derivation of these formulas for the coefficients ¢,
is more in the spirit of the Schwartz distribution theory. This method uses the convolution p‘rold-
uct, f « g (Reference 5, p. 31), instead of the rather loose procedure with integrations involving the
delta function but devoid of testing functions. In this more satisfactory presentation we have,
starting with Equation 15:
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Upon taking the convolution with the unit constant function,

[(21 _2\1)}1l (25 _23)k3 g(z., Zr)] *1
= Z ¢, (1 (;i) byt (e, -2, #1] e -1g <12> k! [0 (2,-2,) 1]

TS,
r 5
_ hy 1 oL k3 3 s
- ; C’i'ss b <h1> by ! 5“1 ) <k3>k3 ! 5k33
ri.s;
- R bt
Chi'ks( D t 30 (20)

Since the convolution of two functions is well defined if one of them has compact support (such as
the delta function or any of its derivatives does), the left member of Equation 20 has meaning if
g(zr, z.) has compact support. The general formula from Equation 20 for the coefficients is, of

course,
(—l)h kg . .
ok, T R TTRGT [(zl—il)x (23—23)3f(zr, Zr)] * 1
And if g(z,, Z,) = m8(z, z.-Z,) then
[(zl—il)hl (2o~ Z)omd(z, -7, 2, -2,)] « 1 = [(2,-8)" - (Z,-2,)%ms(z, -2, z.-Z,)] 1

Thus we again arrive at Equation 19.

These coefficients as given by Equation 19 are of special interest since they are so simply
related to the errors. Those actually pertinent are the ones for whichh, +--- +k,; = 1, since
Equation 19 shows that c,j5000 = ~m€;, Coppo0 = ~M€,, €tC.

Application to the Equation of Continuity

To impose the condition of the Equation of Continuity we substitute Equation 14 into Equation
5 and get, initially,

z ér_ 5 sCir¥5) — E E 8(1’1: rptl sy E . § '2p S (s L)
r.‘S¢ ri’Si 55 p
(T1,~-_rk+l,~-s3) rl,---'skﬂ,...'53 :
+ Z Cr.,s. Z Zk 8 + Cr.,s4 Fk 3( ) 0 . (21)
TSy it k v 5 -

[
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(Since we are dealing with the motion of a particle in an external force field, the dU /azr term in
Equation 5 does not enter.) The guiding principle behind handling Equation 21 is to reduce the left
side to a sum of essentially independent terms. This is accomplished by making the coefficients
of the delta functions independent of the phase space variables z, and Z,. Manipulations that bring
this about are of the type used earlier. In particular,

Zk 5(rl,"‘,rk+1.“',r3) (Zi _ 21) S(SD (Zl _21) 5(52) (22 _22) 8(53 (23 _23) - z( 8(x‘l,"',x'k'i~l,"',53) _ Sk S(rl,"'rk'l'l,"',s‘:l,"'sa) ,

1 f2 3
F, Sl (_1))\1+)\2+)\3 <;1>(;2)(;3) I‘Qk 5(’1_)‘0 8(,.2_,\2) 5(,3_)\3> SEra)
1/\"2/\"3 ey 2,2y 2y
A A A
A0 A0 A0 ot

a)\1+z\2+)\3 F,
f‘k ~ S U w (evaluated at z_ = Z ) .
B1UEL 27T %,237 2 dzy 'dz,? dzy°
I\! /\3 A3

Employing these relations and, where necessary, shifting the indices on the various sums so that
all have the delta function derivatives written as 3("°D  enables us to add all these sums as one
sum on (") with coefficients independent of z, and Z . These coefficients must vanish if the
equation is to be satisfied, and so the governing equation for € s, (0 is

3 3 3

C - 5 -7 - 2 - ( +

o s, § (z,-2,) Con g 21,00 E p Coris -1 s, +1) Conpp g0 o 1,
p=1

p=1 p=1
3 © o™ «©
1 A,y (rl * >‘1> <r2 * }‘2> <r3 * )‘3> £
+ _
- )\1 \2 )\3 Poimgy 2ytay TN Cr1+)\l,r2+)\2,r3+)\3,sl,"',sp—l,""sa
-4 J J \ y
p=1 A0 A0 A3=0 X /\'2 n
= 0. (22)

In Equation 22 any ¢ with a negative index is regarded as zero. In a particular problem in
practice it may happen that # - Z_, which simplifies the equation somewhat. The dot over the
letter, as customary, stands for the total derivative with respect to the time variable.

An inspection of Equation 22 shows that ultimately an integration will have to be effected in
determining ¢, _ . In anticipation of this we turn our attention to the constants of integration.
These depend on the initial values of the differences of Z (t)and Z_(t), and Er (t)and Z_(t); i.e.,
on ¢_(0)and 7, (0). Consequently, with these numbers specified the initial values of c_ _ (1)
follow immediately from Equation 19: o

-1 e T r r s s S,
¢ (@ = T 10 €7 (0) €7 (03 1 (0) 1, (0) 2 (0) - (23)

LT
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In the special case that is apt to occur, namely that the approximate solution (z,, Zr) has the
same initial values as the exact solution (%, Z.) there is considerable simplification: cyogg0 (0) = m,

and all other ¢, , (0) = 0.

Equation 22 is a differential-difference-sum equation in ¢,  ~ and as such can be studied from
many viewpoints. Perhaps it is most natural to regard it prima{rily as a difference equation which
may be treated as a recursion relation, each step in the sequence providing a differential equation.
A logical successive approximation scheme based on this view begins by considering only the
terms in Equation 22 which start with ¢~ whose subscripts add up to unity, r; fry*ry+s, ts,+s;= 1.
All terms having indices on the c¢’s addinlg hp to more than unity are suppressed. As apparent
from Equation 19, terms of the second and higher degree are neglected in the correction functions;
i.e., it is a first order theory in the size of the error functions. To obtain a second order theory
we place the values of ¢, = withr, +---+s;, = 1 (found by integrating the system of equations
just indicated) into the eqha:tions extracted from Equation 22 headed ¢, . with r + -+ +s, = 2.
All terms where this sum is greater than 2 are removed. This syster;l of differential equations is
solved for ¢, (With r, +--- +s; = 2) and these values are used in the equations beginning
¢, . Wwith r1l+l--- *s; = 1. Solving this system gives ¢, = with r, +---+s, = 1 to the second
order in the correction functions. This process evidentlylcaln be continued in theory with the set

of equations where the sum is 3, etc.

Of course, other procedures can be devised for obtaining approximate solutions to Equation
22. We shall give one that draws heavily on the special form of the equation. The one-dimensional
problem is treated and then extended to three dimensions. Let

Gy = Z-F (A =0),

r+A\ ~
(-1)(\“( N )Fz...z (A= 1,2,3, 7).
y

The one-dimensional equation with this simplification in notation is

©

.Cr,s - (é_2>cr—1,s B (S+1)Cr—1,s+1 = Z Gr,)\ C1‘1‘/\,5—1 ° (24)

A=0

This can be regarded as a sum equation in ¢ ,, ., , the left side regarded as known by assuming,
for example, approximate values. In that event this equation is of the "semireduced' or "semi-
normal" type (Reference 8, p. 535). However, we shall examine Equation 24 from another point
of view. One of the other ways is to integrate formally and use successive approximations. This
in effect inverts the d/dt operator. Convergence properties are apt to be improved, however, if
alarger portion of the differential-difference operator that transforms c__ on the left is inverted.
This will be done for the operator T where Te_, = ¢, - (s+1)c._; . Consequently, we

18



write

ér,s - (S+1)Cr‘l,s+1 = q)r,s (t) ’ (25)

where

w
q)r,s(t) = (E—Z) Cr-—l,s + ;Z:‘ Gr,)\cr+/\,s—1 °

=]

The simplifying feature of Equation 25 is the fact that the sum of the indices on each of the
two terms on the left is the same, namely r +s. From the difference equation point of view this
means that Laplace's substitution (Reference 8, p. 427) is effective: p = r +s, o = s. This changes
Equation 25 to

ép—o-,a - (U+1)Cp—o—1,o+1 - q)p—o,o—(t) ' (26)

wherein it is apparent that, as a difference equation, this is essentially an equation in ¢. This

may be emphasized by writing c¢ =u, and @, ,(t) = ¢, (t). Thus, the equation to be ex-

p-c,0

amined becomes

L"‘cr - (O + 1) Ugyy = ¢c’ (t) . (27)

The homogeneous equation associated with Equation 27 (i.e., the equation with ¢, (t) replaced
by zero) has the solution (Reference 8, p. 327)

o o7t
b F(U+1) ’

where » is an arbitrary constant and 3 is an arbitrary periodic function of o, of period one. Since
we are concerned with only integral values of o then 8 is a constant. The variation of parameters
method then suffices in solving inhomogeneous Equation 27. It is assumed that

T Yt
u, (t) = I_%/O'—il)wa(t) (28)

and this is substituted into Equation 27. Thus the equation for w, (t) is derived:

(o + 1)
70 e’yt

W, = YWy oW, @, (t) . (29)
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The "'shifting” operatorE, i.e., Ew, = w_,,, is introduced and regarded as constant, so that the
differential-difference equation (Equation 29) takes on the appearance of being only a differential
equation:

['(ot1)

’)’0 e'yt

W, - Y(E-1)w, @, (t) . (30)

This linear differential equation with constant coefficients has the solution

t
Mo +1
W, = 77 J(; e7E(t-T) _(%;.7.,)‘ (fbo- (7.) dr + e’y(E—l)tCU , (31)

where C, is independent of t. Although I"(c + 1)+ is independent of 7, it is left in the integrand
since it must lie to the right of ¢”®*™) which operates on it (as shown by the presence of E). Then,
the solution to Equation 27, by virtue of Equations 28 and 31, has the form

t
og l" + 1 o
u, = _F(Uy+ ") J eVE(ET) (i/o ) ¢, (7ydr + r<07+ ) e”EtC_ . (32)
0
The effect of the operator e®(*7) has to be determined to make this usable. This is perhaps
most easily accomplished by employing the Maclaurin expansion for the exponential function and
making use of the property E® f(¢) = f(c+n). We have

B bad 1 Mo +1 o 1
u, = T+ 2 FVk(t‘T)kEk(—ya*l%(T)dT*Tgyff) E RrYFtREFC,
Jo ¥=o0 =0
oo ®
¥ 1 ['(oc+1+k) el 1
(o +1) T Y-k Yotk Gon (T)dT (c+1) kT ¥ tkCo'+k
Jg k=0 k=0

t

+k o 1
I Z (Uk )(t—T)k¢U+k (t)ydr + ———F(Oer 1 Z T Ot)kEC,, .
Jo K k=0

=0

The symbol <01: k) , as before, stands for the binomial coefficient. The quantities C_, which are

independent of t but dependent on o, stem from the work on Equation 27. In Equation 26 which in-
volves both p and o, p playing no effective role, C b0+ Can be substituted for c,, . Consequently,
the general solution to Equation 25, upon retrieving the variables r and s, is found to be under the
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assumption that term by term integration is justified

E k N E 1
Cr,s (t) = (S; ) [tk * <I)1'-k.s+k (t)] + F(sy+ 1) F (’yt)k Cr+s,s+k : (33)
k=0

k=0

For the 7 integral in this formula the convolution notation has been used for greater succinctness:

t
tk * q>r—k,s+k (t) = J (t —T)k q’r—k,sﬂc (T) dr
0

The initial conditions serve to determine the constants C for t = 0 in Equation 33

r,s?

- VAl
Cr,s(o) - F(S‘*'I) Cr+s,s ’

which implies that

c - I(s*tk+1) e (0) - (34)

rt+s,s+k '}/S+k

These values are incorporated into Equation 33 and the final result is

T

? +k . N
c.s () = (Sk ){tk * [(2_2) Cropop,sve () F Z Goj A Crolth, stk (t{l}
A=0

k=0 P

T

stk
+z ( k )Cr—k,sﬂc ©) tk .

k=0

(35)

If the exact and approximate orbits have the same initial values and the range on r and s is
taken to be r +s2>1, the final series in Equation 35, the one involving ¢ __, ., (0), drops out com-
pletely. This is no real restriction since ¢, (t)is the mass and therefore considered known. The
upper limit on the summation signs in Equation 35 is r instead of » because ¢, ,, and G__, ,
vanish for k> r. '

Although Equation 35 can be said to solve Equation 25 if the right member of Equation 25 is
taken as given, actually the right side involves the unknowns, ¢, . . Thus, in effect the inversion
of the operator has changed the differential-difference equation (Equation 24) into an integral
equation, but as such it is well adapted for approximation methods, the method of iteration for
example.
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For a first order theory the equations are obtained from Equation 35 by setting c__(t) = 0

for r +s >2. These equations are
t .
cu () = J [<Z_F) e + F, Clo] dr * co (0)
0

~

t t N
cp () = J (2-2) cppdr + J (t-7) [(Z—ﬁ)cm + cmm} dr + ¢ (0) + tey (0) .
0 [

As mentioned above, the terms ¢, (0), ¢, (0), and t ¢;; (0) disappear if the exact and approximate
orbits have the same initial values.

For a second order theory it is assumed ¢ (t) = 0if r +s>3. The equations in this case

are
t o
Co (t) = J [(2-F)ey + Foep - F,, Czo] dr + ¢y (0)
0
t t .
CIO(t> = J (z2-2) S0 dr + J‘ (t-7) [(Z-F) Coo T Fz Cip + Fzz C20]d7 + €10 (0) + t ¢y 0) ,
0 0

Gy (t) = J; [(é_ﬁ) o * F, CuJ dr + o, (0)

t t
ey (1) J [(E—Q)cm + (Z-F)ey *+ 2F, czo] dr + 2 J (t-7) [<2~ﬁ) cor * F, c“] dr + ¢y (0) +2t ¢y ©)
0 0

t t
Czo(t) J (Q—Z)CIOdT + J (t-7) [(2*2)c01 + (2~}<:)c10 + 21:“Z Czo] dr
() o

t
e T E N R TRURE S WOR
]

The extension from one dimension to three dimensions is almost immediate. After the sub-
stitutions of r; +s; = 4, and s, = o, a separation of variables is performed as before. In place of

Equation 25 Equation 22 is now considered, written as

¢ t) - ? (s +l)c = @ .
r1r2r3515253( ) P Ty ,rp—l, 1T3.8y, ,sp+1, 1S3 rlr2r3slszs3(t)
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The result comparable with Equation 35 is

. .
5 tky\[ss Tk kitgt
C‘l’:’ssnsg’s kz ks t ® e pkgry oy rg kg, stk sy thy, syt

k=0 k,=0 k=0

5 5 Tk, (33 tky Kty thy 0
ky kg t C"l‘kr"z‘kz"3“k3v51+k1'52+k2'53+k3( ) -

The preceding work on the improvement of an approximate orbit for a single particle suffices
as well for a system of n particles. It is only necessary to let the indices 1, 2, 3 refer to the
first particle, the indices 4, 5, 6 to the second, and so on, letting the range onp and on i in r; and
s, be 1 to 3n, instead of 1 to 3. However, it is just as easy to obtain the necessary formulas and
equations by keeping these ranges 1 to 3 and indicating the different particles by a separate index,
say ., with range 1 ton. In this latter approach the approximate orbits of the n particles are in-
dicated by z, = 2.® (t), 2z =28 (t) wherer = 1,2,3and « = 1, 2,-,n. The exact solution is

D Y T D B s (e ) 500 e, -2 5)
a-1 r1=0 Ty r3 sy s, s3

2O (2, - 28) 60 (2, -2,8) 50 (2,-28) 5(z, - 2.7) . (36)

for which the abbreviated notation is

ZZ a] (t)é ](ri)...b[a](s3>

If the actual trajectories are given as z_ = ?,[c‘] (t),
the representation

z, = Z 1 (t), then the exact solution also has

n

£ o= ) mes(e-%8) 5(s - 2) 5z, - 28) 5(2,-2,8) (2, -2,8) 5(z, - 28)
1

a=

The differences between the exact and approximate values for the coordinates and velocity com-
ponents are ¢ ¥ = ¥ ¥ -5 andn® = %¥ -2 @, and we obtain as a counterpart to Equa-
tion 19 the formula for the coefficients in Equation 36 for the expansion of the exact solution
distribution function:

Ch[fki (t) = H - kT € "ttmy - (37)

23



Working as before leads to the fundamental equation, the counterpart of Equation 22:

a 3
ér[ﬂ],s. - Z (épl?]_zp[@) e, Z 2pE1] C..[ﬂ,sp—l,... - Z (Sp+1) C-.M.,rp"‘l,...,sp'*l....

p=1 p=1 p=1

+
,!\/
L _

—

!

—_

N
>

o

<

by

>

w
e
-
RS
>
~_=
T
>/xo
&+

A\ T3 TR\
] d
/\3 I‘;zl.. ©ZyZge. .zgz3.. .23 Crl‘\‘1\1,r2+/\ 2.r3+/\ ..... s =1,...
A A ) °

p=1 A0 A0 3=0 1 2 Ay
= 0. (38)
Here as in Equation 22 the notation c.F"].,r -1,... eans that the subscripts are the same as for
P
M » with the exception of the subscript r, which has been changed to r_ - 1. Also, as

f17273815253
before, any cr@s with a negative index is considered zero.
it

If the self-gravitation of the particles forms an appreciable part of the force field then this
self-gravitation effect must be included in the }7; ¥ term in Equation 38. This self-gravitation
term has a reasonably simple formulation involving Cﬁs which will now be derived.

i

The position space density N (z,, t) is obtained by integrating over the velocity space:

2 .,
E ? Hotys (05 D gz gz gz,

Z Z c,H 000 () 5(r1) (21'21[01) 5(r2) (22_22[@) 5('3) (22—23["]>

2
i

F1TaT3

The CrEa]rzrs oop (t) involve the masses of the particles, as shown by Equation 37. The gravitation
potential per unit mass due to the particles themselves is then

(CF) R A - (NN ) B AR \ NN L) B AN
8 Z, -2 8 Z,~ 2 8 Z,~z,d
-G % % ¢ B e (D (z,- ) (22227 - <3 3) dz, dz, dz,

c
1l

f1727s ]/ (zl—il) 2+ (22*72)2+ (23—73)2

1

+r, tr
-G E E cH (t) (-1) 17727 <
r 113000 _ . Ty . T3 l/ _ 2/
a _
9z, Z," 0Z,4 Zk:(zk zk) ;;;[a]
a l'l

The convention adopted earlier is that the negative of the gradient of the potential is the force
vector. When -JU/9z_ is incorporated into F,, (see the earlier treatment of the n-body problem)
for the evaluation of F, atz = 2,["3 , assumed in Equation 38, the terms that do not become well

defined are suppressed.
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WEST FORD NEEDLES—DISPENSING

An example of a problem that can be treated as degenerate in velocity space but not in posi-
tion space is provided by the West Ford Needles (References 9-13). The intention of the West
Ford project was to place a large number of small needle-shaped particles into circular orbits
around the earth and form a thin belt. This presents several interesting dynamics prob-
lems, in particular that of dispensing the needles from the original container to spread out into
the belt, and that of the dispersion effect on the belt by the perturbational forces that may be as-
sumed to be present. It is not the purpose here to attack these problems exhaustively but rather
to provide a sufficiently broad treatment to exhibit the aptness of the weak functions in situations
of this general character.

First the problem of the dispensing of the needles from the container will be treated. The
natural coordinates are the spherical coordinates p, &, ¢ where @ is the longitude and ¢ the co-
latitude. The components of the linear velocity vector in these respective directions are P, 6, ©.
Liouville's Equation for such a coordinate system is

af af 8 _of ®4f gu @ o2 \of
ot tP oo *tosing 06 T o ad T\"dp T p T p JoP
+<_ 19U PO cotd®) of 19U P cot¢®2>if _
psing 368 ~ p P 00 T\~ pdp " o T P o - 0 (39)

We shall deal with an equatorial belt. Thus the problem could be regarded as essentially
two-dimensional if the belt is assumed to be a curve (as we shall assume). However, the three-
dimensional equations will be retained and the delta functions will take care of this specialization
automatically.

At time ¢ = 0 the needles are expelled from their container at a distance p, from the center
of the earth. They move in the longitudinal direction with a velocity dispersion function, in this
direction only, of g(®). That is to say, the initial velocity distribution imparted to the particles in
the 6 direction by the carrier rocket and the expulsion mechanism is denoted by g(®). This func-
tion will be taken as normalized so that its integral from -® to +®is unity, and it will also be
taken to be symmetric about the circular orbit velocity o, @. Thus, Liouville's Equation (Equa-
tion 39) is treated as an initial value problem, the value of f at time t = 0 being

- = M - A
fo = f(5. 0.6, 7.0,0,0) = -5 5(0-p,) 5(0) 5(# 3)5(P) 5(0) g(0) @0)

In other words the needles, of total mass M, are concentrated initially at the point (p,, 0, 7/2)
with zero velocity components in the o and ¢ directions but with a velocity distribution g(®) in the

fdirection. The p? is present in the denominator because the delta function in curvilinear coordinates,

when written as the direct product of delta functions of the individual coordinates, must have the
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Jacobian of the transformation in the denominator (Reference 14, p. 292); for spherical coordinates
the Jacobian is p? sin¢ which is converted to o because of the presence of 8 (e = ) and 8(¢-7/2).

The method to be used first for this initial value problem is that provided by the Picard proc-
ess on t, which essentially amounts to obtaining f as a power series in t. This has the advantage
of being carried out rather easily but it has the disadvantage of presenting f in a form that does
not display all the properties of the distribution function as clearly as certain other methods, in
particular the method illustrated later.

The Picard process consists in writing Equation 39 in the form

+2§_f+_ﬂ_®i£2§£ 1 JU PO cotedd) of
L) 9ot o Yo )P T\ psinddd " o " o 98

-
%)
o
o
|
=) )
——
ja!
Q)’Q)
Rl
+
©
e
-
o]
©
Q:|Q_:
Dl

19U PO cotg@?) af
+<'F%'7+——p >%j|dt,(4l)

and employing iteration, starting with f, in place of f in the integrand.

We shall consider the force field due to three sources: the earth's gravitational field, the
self-gravitational field of the particles themselves, and the gravitational field of the needles'’
original container which presumably will travel with the needles after they have been ejected.
The potential per unit mass due to the earth's gravitational pull is

GM

E

(1) = e e——

U o

That due to the needles themselves is
7T 27 00

N(p, 6, ¢, t) p?sinddpdf df _
0 {52 +p% = 20p [COS dcos b+ sin%sinqﬁcos(?-@)]

0 0

where N(p, 8, ¢, t) is the spatial distribution of the needles. On the assumption that the con-
tainer (with mass M_) is fraveling in a circular orbit in the midst of the needles, its potential

per unit mass is

GM

<

U(3) = -
[,002 +p% - 20, psingcos(f - wt )]1/2
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For the initial approximation f = f,, so that

jﬂ £, dP dO© do

i ﬂj _M?— 2 (P Po) () 5( - %) S(P) 5(®d) g(®) dP d® dd
Po

4
o
I
2z
-
<
I

M 77
= —3%(p- 8(0) 8-
P (0= Po) ( 2)
The initial approximation of the self-gravitation potential consequently is

s 27 @

Ny (b, 8, ) p? sing dpdf db
-G n ) [
o Jo O}/)Ez+p2—2pﬁ [cos%cosdwr sin%sind)cos(g—@)]

1"

UO(Z)

GM

}/,002 +p? - 204 £ si;xqbcos o

The initial potential due to the container is found by setting + = 0 in the formula for U(®;

GM
(o

3 = _
UO()_

}/poz +p? —72p0 psing cos &
Consequently, the combined initial potential is

G(M+M,) GMy
U = - - —_———
0
}/,oo2 +p% = 2p, psin¢ cos

The terms involving the potential, from Equation 41,

au, af, 19U, af,
T dp 9P > T psing 96 90

au, 9f,

0
dp I -

o

simplify considerably because of the delta functions in f,. In fact,

5 (e~ Po) 3(8) a(qs- %) §'(P) 8(®) g(®) ,
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Substituting f, for f in the integrand of Equation 41 then leads to the first-order-in-t approxima-
tion to f:

£ Mooy sce 5(-%5?5@ )
% X (o= pg) 8(8) 8\~ 73)8(P) 8(®) g(@)

0

M 7
- [p—3 8(p=po) 3'(&) S(qb— 7) 3(P)5(9)g(®)0

M®2 GMME A .
+<p—03 - p04> 8 (p = Po) 8<t9>8(d>- 2) 8'(P) 8(®) g(@)} t

This phase space distribution can be integrated over the velocities to give the position space
density function through the first power in t. Simplifications occur here because

JB’(P)dP = 0

and because g(®) is assumed normalized so that its integral is unity. This latter specialization
also entered into the computation for N;. The first order position space density is

M
) - =580 p0) s’<e>s(¢-%)powt

M
e R ) 5(¢-%\ o

The factor o, » arises as from the integration of ®¢(®), which uses the assumption that g(8) is
symmetric about the point pjw:

J ®g(0) do J [(@ - 00 &) * Py w:, 2(0) d®

-

po‘”j g(@)de + J ©-p; ) e(®)d®

The last integral vanishes since its integrand is skew-symmetric about p, «; i.e., an odd function
of 0-p, w.

To obtain f ,, this entire procedure is repeated, but f ,, is used in place of f in the integrand
of Equation 41. This means also, of course, that U,, = U(f ;,) is employed. Thus, for the
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needles' self-gravitating potential the potential integral with density N ,, is formed. The evalua-
tion of this integral depends on a formula used before, a(x) 8'(x) = a(0) 8'(x) = a’(0) 3(x). The
first order potential arising from the container's mass is obtained simply by expanding its poten-
tial function in powers of t and keeping only the first two terms. The complete first order poten-
tial turns out to be

by = Ulrgy) oM G(M+M,) ) GM+M_) wo, psingsin® .
W P }/,002 +p2 - 20, psing cos 6 (,002 +p? = 2py psingcos 9)3/2

The details in determining f ,, are similar to those for finding f ,,, although, as expected,
the work is considerably greater. The resulting formula is

M ™
fay = 5730~ r0) 39256~ 7)5P) 5(2) 6(®)

M
'[p—a 8(p-po) 8'(8) s(qb-%)B(P) 5(®)eg(®)®

0

Moz Mg 7\,
i\ 5(p~p0) 5(8) 80~ F) 8" (P) 5(0) e(®) | t
1] Mfe2 M 7
2 5a\ee " pz ) ¥ e #0) 5(6) 5(¢- 77 )5(P) 5(0) &(®)

2

-5 (o= e0) 876 5(3 - 7)5(P) 5(0) 6(®)
0

e (e  GMg , 7,
Tl <p—o-p—02—> 5(p - o) 8'(8) 3(6-7) 5" (P) 5(®) &(®)
M /@2 GM 2 LAY
- ﬁ(To' p02> 5(0= o) 8(6) (6~ T7)5"(P) 3(®) &(®)
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M (@2 GM 7
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MO [ 6?2 My il . 2
-;0;<p—0 "o ) 5(p- ko) 5(0) (3~ 7)5(P) 5(9) & <®>}t . (42)
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The essential problem remains, of course, of extracting the information of interest from this
prolix expression. The principal difficulty arises from the meaning of the terms involving the
derivatives of the delta functions. The most natural way of investigating these terms is to take
the various moments of f. These moments give average values for p, o2, 6, 62, ete. for the col-
lection of particles, and thereby describe the distribution. Different delta derivatives take effect
for different moments.

Of primary interest is the position space density function N ,, = N (£ (2)) , generated by inte-
grating f ,, over the velocity space. From Equation 42 this is immediately found to be

. M ) M
Nay = 57 3(p=20) 50y 5(2-3) od 3(omp0) 3'(0) 8(3-7)t

1 M 2 GM
T{p_zq %g(u)du-ﬁ) 5" (0= pg) 5(8) 8(¢-7)

0 0

M
"FJ:UZ g(u)dud(p-p,) 8"(8) 5(¢‘ %)

[}

LM
Pq

® a2 GMj -
J p—og(u)du— - 2} S(p—po) 8(0) 8(;15— 7)}0 © (43)

- 0

It was assumed that (® =P w) g(®) vanishes at +», so that the term involving
. d
g®) + (0-py0)e' (®) = 45 [(0-p,«) g(®)]

vanishes under integration.

The integration of N,, over all position space should, and does, give the total mass of the
needles:

T A2T D
j J JN(Z),OZ singdodfdp = M
o Jo 0

This provides one check on our work. The masses of the earth and the container do not appear

since these were not considered to be included in the distribution function. They merely contribute

the external force field.

At the initial instant the needles were assumed to be concentrated at one point, but the con-
tinuous velocity distribution g(®) imposed on them caused them to spread. To get an idea of the
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extent of this spreading (in the second order theory) in the radial direction, the o - p, moment of
N2y will be computed. This divided by the mass M gives the average or expected value of » - p, at
time t:

il

T 27 00
M{5= 75, ) L L J (0= pPo) Ny £? sinddp do d
0

N|r-l

— = u? g(u)du - — p2(p-py) 8'(p—py) dot
P02 Po e 0 2 o ( 0) ( 0

1]

It2

M]i—
Sl=

where I is the second moment of g(®) about its point of symmetry, o, ,

-
I

j (u=rpy»)? g(u) du

@
J u2g(u)du - plw?
-

° GM,,
L g(u)du - ===,

since the angular velocity « for a circular orbit is YGM; o, %% Therefore the average or expected
value of p~p, at time t is

which, we note, is of the second order int.

The spread of the needles in the # direction after expulsion from the container is indicated by
the & moments of N,, . It is quickly found that

— Mpow
MG = 3 pozt = Mot |,
Po

so that the average value of ¢ is, as expected from the symmetry of the setup,

5=wt
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This, of course, tells nothing about the spread of the needles in the ¢ direction. An idea of this
is gained irom the second moment of N,, with respect to ¢; i.e., (when divided by M) the average

value of 62. The only term that contributes to this in N,y is the 8"(6) term, since 62 5(6) = 628'(6) = 0

and 4238"(0) = 28(0). We obtain

M—G_z = —P%-(I+p°2w2) t? ,

or

vy 1
62 = Yo? t?+ — 1t?
el

The moments in the velocity space when computed will give information concerning the aver-
age values of the different velocity components.

Our chief dissatisfaction with the power series in t method is that it does not give a compact
formula for f or N independent of the delta function where such should exist. For example, the
density distribution in the ¢ direction at time t is no longer degenerate but is continuous; i.e. the
needles have been spread out, and so there should be a function representing this that involves no
delta functions. Such a function was not obtained by the method just used. A method will now be
given that does provide this form for the answer.

Equation 42 indicates that, as far as it goes, f involves ¢ and ® only through 8(¢-7/2) and
§(®) (which has the effect of keeping the problem two-dimensional), and P only through $(P) and its
derivatives. This suggests that f be assumed to be of the form

@®

£ o= Z E_(p, 6,8, t) 5 (P) 5(0) 8((;5— 1;—) . (44)
r=0
The advantage of this form is offset somewhat by the fact that the resulting equations are non-
linear if the self-gravitation of the needles is taken into account. Therefore the treatment here
will be restricted to the case in which the force field results from the earth's gravitational field
alone. Consequently, the equation to consider is a specialization of Equation 39:

t—+— | =%

af [ M @2  ¢?) 9f
o2 ) p ]

+(p@) cot¢®®>af <_P<I) cot¢>®2) 9f

T e JetU et o ) =0 (45)
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The initial condition is again presented by Equation 40 which implies that for the unknown
functions E, (p, ¢, 0, t)

M
E, (p, 6,0, 0) = pr) 8(p=py) 8(6) &(®) ,
0

(46)
E (0, 6,0,0) = 0, (r>0)

The differential-difference equation is obtained for E_ (o, 8, ©, t) by substituting Equation 44
into Equation 45, sliding summation indices so that all the sums contain §(*) (P) §(®) §(¢ - 7/2),
combining into one sum, and setting the coefficient of (7 (P) 8(®) 8(¢~7/2) to zero. This coef-
ficient has to vanish in order that the series vanish, since the coefficient is independent of P, @,
¢. This fundamental equation for E_ (e, 6, ©, t) is

aEr aEr+l (€] aEr (@2 GME ® aEr"’l 1 47
Tt GED T v o T ) B D 5 T (A BE,, =0 . ()

E_is zero for r<0.

This equation can be regarded as a recursion formula in conjunction with an iteration pro-
cedure. For the first approximation we shall take E, = E, = E;, = --- = 0; the solution that satis-
fies Equations 46 is

n

M et
ED p—ZS(p—po)g((’B)S(@"p—o)

0

M 1 in G-Gt/
= e 5(e-p0) g<®>2—ﬂ§ S (48)
Po

where the series is the Fourier representation of the delta function (Reference 5, p. 33). This
representation is introduced to facilitate the use of the Laplace Transformation in solving for E
ete.

To improve on this approximation to E; we determine an approximate E,, using the value of
ESD in the equation for E, (setting E,= 0), and then use this value of E, in the equation for E,.
The first three equations taken from Equation 47 are

JE, ® 9E, JE, o 9E,; 1
at ¥ 536 T 9p " p o0 TpEL
9E, @JIE, (g2 Qi B, @I, 1
ot tp 896 ~ ~ P o2 E, +2\35 " %590 * 5 Eaf
JE J 2 M JE JE
2 @ %% 8 E 3 89" 1
t Yo a8 T —<p—p2>E1+3<ap T p 90 +,oEs> : (49)
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E Y is the solution to the first of Equations 49 (subject to the side condition imposed by
Equations 46) with E, set to zero. We thus seek E (P as a solution to the second of Equations 49
with E, set to zero, E, replaced by E", and the initial values of E, taken to be zero in agreement
with Equations 46. That is, the following equation is to be solved for an initial value of zero:

1 1
IED g IEMD 2 GM

_ M e ey 1 in(6-0t/py)
at T o 96 ~ -';075@-00) g(®) <—p—‘p—2>7§ e o (50)

The Laplace Transform of Equation 50 with respect to t is

EM .
_ ® aEl M @2 GME 1 exn@
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1 o a0 Poz ( o) Lo poz 2 -4 in® (51)
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By assuming a Fourier expansion for E ),

from Equation 51

_ M 02 GME 1 ein9
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Thus upon taking the inverse transform
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This same technique is used to determine E(? from the first of Equations 49,

M
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This successive approximation scheme for Equations 49 is in essence the same as that sug-
gested for Equation 22 in the section devoted to the improvement of an approximate orbit of a

single particle or n particles. ¢ with r, +--- +s; = 1 was of greatest interest for that case.

In the present case E, is of greatés‘xc interest, because it is the only E_ that remains upon reduc-
tion to position space after integrating over the velocities. The expression for N, the position

space density, is simply

N(f) = Jﬂ f dP d® do

w©

= J E, (0. 9, 0, t)d®5(¢"%)

When the value for E, given by Equation 52 is employed the spatial density is found to be

(ko 5GMG ro O\ (pg 7 Gy (e (53)
¥ 2t * 6,2 t)5(rd"f)o) g\t " \grz 60,/ 2(°7 P T )

The interesting thing about this formula, in comparison with the corresponding Equation 43
of the previous method, is that here the i/, t dependence is expressed through the continuous point
function g(u) instead of through the delta function and its derivatives. Note that this method has
transferred the continuous initial velocity distribution in © to such a distribution in the position
space coordinate .

Of course, as in the previous method, it is possible to form the various moments with respect
to N,,, given in Equation 53 and obtain the same results for o~ p,, ¢, 7, etc. as in the previous
method. However, the particular form for Equation 53 enables us to get other information of in-
terest. For example, the longitudinal variation of the needle density is displayed by the formula
resulting from integrating Neoy in the o0 and ¢ directions:

o kg 2
M 1 Po  (Po P 1 Po_ (%0 6)
L L Ny pdddp = 5= |:<1 + 5w t2> - g(‘t—> 1 g e - e?) 28 ( t

WEST FORD NEEDLES—DISPERSION

After the dispensing mechanism has spread the needles out in a belt around the earth, the
question arises of the permanence of the belt under the action of the various disturbing forces.
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Ideally, the unperturbed distribution has the shape of a circular wire of uniform density in the
equatorial plane. The particles are to have a nonzero velocity component only in the longitudinal
direction, of a magnitude which provides a circular orbit under the earth's gravitational field
alone. The distribution function that describes this is

o M a7
f = ol B(p—po) 8(:75—- 2)8(P)8(®-p0m) (@) . (54)

The 27 in the denominator is necessary so that the integral of f over all phase space is simply M,

the mass of the needles.

This f represents an equilibrium distribution under the earth's gravitational force alone and
50 it is a steady state solution to Liouville's Equation. At t = 0 the perturbational forces, repre-
sented through a potential U, are assumed to take effect, modifying the distribution function by the
addition of a function F which vanishes att = 0:

This is equivalent to saying that f is to satisfy an initial value problem under the combined earth's
gravitational and perturbational force fields with an initial value fas in Equation 54.

Under these circumstances Liouville's Equation becomes an equation for F,

gF oF _® JF edF [ ou M @ ¢?)F
at Y P9s * osing @ teed T "9 2 TTo t o) op
du_M AP _ 1__JU PO _ cotgpd®) JF
" 90 2mog 8 (e Po)5(<75' 2)5 (P) 8(8 - p, ) 5(®)+( psinddd " 5 - " o )a@
19U M ™ , 19U PO  cot 8% IF
T posing 90 Zp 2 5(,0*,00) 5(¢“ Q)S(P)s (®"Po“’) 5(®) + (’pa -5t P ) ]

149U M 7
-9 ZTp;;S(p-po) S((,b— §) S(P)S(@)—pow) §'(®) = 0 . (55)

For the problem to remain simply two~dimensional, the disturbing force in the equatorial
plane must act only parallel to this plane. A way of expressing this, which will be used here, is

to have 8(¢~7/2)3dU/6¢ = 0.

Letting

Fo= s(qs— %) 5(®YF(p, 6, P, O, t)
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and substituting into Equation 55 gives

9F  LOF @oF [ 9U M g%\ oF U M
B * dp

2mp S(p=rg) 8'(P)8(0-py )

ij 1
56 " P 00 5,2 S(PTPo) (RIS (@-pow) +PF = 0, (56)
0

where Uis U evaluated for ¢ = #/2. This equation is to be solved under the condition that F vanish
at t = 0. Since we are interested primarily in the character of F in position space it is expedient
to assume an expansion for F of the form

F(p, 8,P,0,t) = Z Z u, (p, 6, £) 8 (P)s® (@-p, 2 (57)
r=0 s=0

Thus, in finding the position space density the delta functions in Equation 57 are removed by in-
tegration, so that N is expressed in terms of u__ (0, ¢, t). We hope to determine u__ (p, 6, t)ina
form devoid of delta functions of 9.

The equation inu__, after combining Equations 57 and 56 and making some delta function
manipulations, is

aurs aur*’l,s Pg @ aurs s+ 1 aur,s+1 36 GME /002 m2
Jt - (I‘ * 1) ap * yel aé - 13 06 - a—p P2 l'lr'l,s + rej ur'l s
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B P Ueg,or1 T2\ 2/ 51,542 "0 30,50 T P) Yrer, -1 0 Urt,s
1 U M T
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e urﬂ-S] oL (® pow) dp 27rp028('0 po) 8 (P)S(® '000“) poa@Qﬂp 25(O'Po) 8(P) 8 (®'Po“) =0 . (58)
0

Two types of disturbing forces will be considered: solar radiation pressure, and drag due to
electromagnetic effects (References 9-13). The solar pressure will be taken as a constant force
acting in the negative x direction, the earth's shadow effect being neglected. The potential then
has the form Spcos & sin¢. The electromagnetic drag can be approximated for particles traversing
a circular or nearcircular orbit by a conservative force with potential A9, with A a constant. Con-
sequently, the disturbing potential is

U = A6 + Spcos@sing . (59)
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The functions u_
Equation 59,
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are to satisfy the system of equations derived from Equation 58 by using

L (60)

under the initial condition of the vanishing of all u__ at the initial instant. This problem submits to
the technique used earlier on similar problems. The first approximation to u,, is obtained by

solving the first of Equations 60 with uy, and u,, set to zero. This homogeneous equation with zero
initial data evidently has as its solution u” = 0. For the first approximation to u,, and u,, we put

Uge = ugy? = 0 and setug, = u;; = uye = 01in the second and third of Equations 60:

du  pyw dufy)  ppw 1 M
9t T o 98 T o ufl = p—o (A'Spo sin@) 202 5('0_/00)
' (61)
Py @ duf pyw ‘9“1(01) M
-2 o uo(ll) T +—p_a§— = Scos?8 2mp 2 S(,o—,oo) .

o)
C

This system of linear partial differential equations with constant coefficients (as far as the
differentiation variables are concerned), subject to the side conditions of zero initial data on t
and periodicity on 4, can be handled by various techniques. A convenient way is that used previ-
ously: taking the Laplace transform with respect to t, solving the resulting system of total dif-
ferential equations in &, and then taking the inverse transform. The result in this case is

(1 = S (o~ po) R
Ugy —msm 2wt
MS §(p - o) 4+373 4-373
- 2ﬂp02a)—{2cosr9- y Cos(r9+(}/_2—1)a)t)— 4 cos 8—(}/§+ 1)5(){' :
‘ > (62)
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o s (L con e
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+ﬁ2ﬂp02w {‘3sin3+ ) sin[@Jr(ﬁ—l)wt:lJr 3 sinl:e—(ﬁ+ l)w:l . J
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Therefore the value of u’ is improved by solving the first of Equations 60 after evaluating
the right side through the use of Equations 62. The formula obtained for u,, is

AM 2 1
TR 277~3w[5'(,0‘/70) * 2o S(p—po)](t— o sinﬁwt)

SM

3 1 1 1
+ m{[asl(p_po) Y oy B(p—po)J cos 0 =7 3'(p_p0) cos(@-wt) ~ ot S(p—po)sin(e-wt)

ST 540 s0) + Tpgts( o) | cos (V2 1)r]

- 373 -
|22 s om00) ¢ T o0 ) °°S[9‘(ﬁ”)‘“t]} €3

For a still better approximation u{}, u, (", and u ("’ could be found from four, five, and six of
Equations 60. These values and u,> would be used in equations two and three to yield u(? and u .
Finally these values would be put in the first equation and u,, solved.

An analysis of the results would begin with the determination of the position space density,

N = ﬂ]fdpd@dq» = gfg (F+F) PO do = 2722 s(p—po)s(fb-%>+uoos(¢—12).

0

-

The variation of the density with ¢ is indicated by the integration of N in the » and ¢ directions,

Loy ks
M AM 1 sM_[ 2 1 _
L —[) N(z)pdcﬁdp = 2—7ij+ m(t‘m sin 2wt> +277_,o_02w{_ ~cos 6 +cos(6 ~wt) ~ t sin(f - wt)

+ 2+4fcos|:3+ (ﬁ—l) wt] + g%gcos[e“(ﬁJr 1)wt]}

+ Sz[(—2w2t2+‘-') cos@+(%w5t5+---)sin9jl}. (64)

Po @
If the radiation pressure effect alone is considered it is noted from Equation 64 that the density

runs essentially as M/27p, (1 -k cos 6) , meaning that initially the density concentration increases
on the far side from the sun and decreases on the near side.

39



An insight into the radial direction effects of the disturbing forces may be gained from a study
of the radial moment. Straightforward computation gives

7

0
- AM i
J‘ .[ (,O'PO)N(2>pd¢dp - 277p02a) (t V2w sin }/2_a)t)

[N

3
SM Lo Po 4+39y2
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M A 1 S 1
Sl = s 2<-3_w3t3+--->+ 2[(—7w2t2+--->c059
Py @ Po @

+(-3—10w5t5+--->sin8:]}. (65)

The average value of o~ o, as a function of ¢ is found by dividing Equation 65 by Equation 64.
The electromagnetic drag is seen to contribute a uniform shrinkage to the belt with a change in o
amounting to - A 3p, »? (wt)® + -+ which, for a moderate value of t, is likely to be very small be-
cause of the probable small size of A (Reference 13). The solar radiation pressure causes a shift
of the entire orbit away from the sun together with a much lesser shift in the 90 degree leading
direction to the direction away from the sun. This may be noted from the negative lead-off coef-
ficients of cos ¢ and sin ¢ in Equation 65. The shape of the belt changes too—from a circle to nearly
a limacon, with the nearest point to the earth almost on the line from the earth to the sun.

EQUALLY SPACED ECHO SATELLITES

Now we shall discuss the problem of whether a number of artificial satellites (for example,
Echo balloons) which are initially equally spaced around a common circular orbit will maintain
this symmetry to a high degree, or tend to bunch in one region, thereby leaving gaps elsewhere.

As in the case of the needles' belt geocentric spherical coordinates prove advantageous. How-
ever, now the plane ¢ = 7/2 will not be the earth's equatorial plane but rather the initial orbital
plane of the satellites. The motion of the satellites will be treated from the viewpoint of perturba- \
tion theory, the dominant force field represented by that for a spherically-symmetric earth. Then
the unperturbed distribution f satisfies Equation 45,

n

o5 ) 3= o) 3(6-0.) 3le T sy s(6- 00 ) (@) (66)

a=1

where m is the mass of each satellite and ¢, = 2a7/n+wt . Let F represent that portion of the
distribution arising from the perturbational forces, so that the total distribution function under
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all forces is

f = f+F. 67)

T,, T, and T, designate the components of the disturbing force per unit mass. The fundamental
equation for F, on the basis of Equations 39, 66, and 67, is
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PO  cot 98\ oF P®  cot $8% \oF
+(T9‘T‘ B >?@+<T¢' Pt p L3

¥ p’:z T, s(p-po)8(6-6,) a<¢——727)5' (P) 5(@ = py ) 5(D)
a=1
+ ?Te 8(p=po) 8(6-6,) 8<¢—%)5(P) 5' (0~ py ) 8(2)
a=1
m n
* ‘P?‘Tas S(p—po)S(@-Qa)8<¢—%>8(P)8(®-p0w)5'((D) = 0 . (68)

a=1

One method of continuing is to assume an expansion for F involving e, ¢, ¢, P, 6, ® only in the
delta functions and their derivatives:

P o= Lz Z Z C;;”ré (t) NGY (P‘po) 8(rz) (6-9,) 59 (¢__g)5(r4) (P)S(rS)(@)—po ) 8(rs) @) .
a=1 rlm,r6=0 (69)

The differential-difference-sum equation for C;’;mrs(t), obtained by substituting Equation 69 into
Equation 68, is quite elaborate for the general perturbing force per unit mass (T,, Ty, T¢) . Aless
formidable equation results from a procedure similar to that employed in the latter part of the
last section. This is a compromise. Fis expanded in terms of delta functions in P, ®, and @, with

Py @, and ¢ (and t) left in the to-be-determined coefficients. Then

P Uy, 5y 8, ¢, £) 500 (PY 5O (8) 55 (@) . (70)
X, Yy, z=0
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The substitution of Equation 70 into Equation 68 leads to the differential-difference equation,

du, . 204 w(y +1) pow(x+ 1) pow(zt+1)cotg
at - P ux'l,y+l,z * 0 ux"’l.y‘l,z * P ux.y’l,z+l
2py w(y + 1) cot ¢ auxﬂ,y’z wpg Buxyz y + 1 6ux,y+l‘z _z y1 6ux’y'z+1
ST o Uyt~ (X1 90 T psind 96 T~ osind 00 ) ET)
y+2\1 z+2\ 1 (x+hH(y+l) (yt1)(z+1)cote
+ 2 2 /Tux‘l,y"’z,z 2 2 Yol ux‘l.y.z+2 ! P UX+l-va - P Ux,y,z"’l
3,2 2,2
(x+1)(z+1) y+ 2\ cotg _Po @ T Po @
- 5T Yy, T2\ 2 P YUy, y+2, =1 p? Ue-1,y,2 * pYx-ly,z P Ys-1,y,z
o2 w? cot b
+ T ux.y—l,z + Td’ ux,y,z'l + P - ux,y,z—l
o i
o _ L 100
+ Z T, (po, G 2)5(/)—/;0) 5(¢-6,) 5(¢> 2>Am
a=1
n
+ T ( Z l) ‘ T\ A 010
8\Por Yar 2/ 5(0=po) 8(v-6,) g(qs— Q)Am
a=1
+ 6 V(oo 8(6-0.)5(e-5)n00 = 0 71)
Tyl Por Var 2 (p ’00) ( a) 2 /% xyz ! (
a=1
where
Axlyozo = 1 if x,y,z = 1,0,0; Axlyozo = 0 if x,y,z # 1,0,0;
Ax(;,lzo = 1 if x,y,z = 0,1,0; AX(;IZO = 0 if x,y,z # 0,1,0;
001 = ; = . 001 = ;
Axyz 1 if x,y, z 0,0,1; Axyz 0 if x,y,z # 0,0,1.

The problem is considered as an initial value problem. The satellites traverse the same
circular orbit with constant angular speed until the "initial instant,” t = 0, when the perturbing
forces take effect. Consequently, Equation 71 is to be solved, subject to the initial condition
u_(p, 8,4, 0) = 0.

xyz

An inversion of a differential-difference operator portion of Equation 71 will not be attempted,
although terms could be extracted that bear a resemblance to those in Equation 24, where such an
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inversion was accomplished. Nor shall we be satisfied with merely inverting ¢/9t. Rather, a tech-
nique will be used that lies between these extremes. The difference operator aspect will be treated

as a recursion relation. Inasmuch as it is the ¢ variation that interests us most 3/9t and 9/96 will

be inverted, with the remaining differential operators taken care of through appropriate delta func-

tion expansions.

For the first few values of the integers

x, v, and z, Equation 71 is

Moo P TUoog U0 1 Mo 1%or 2 cot ¢ _
at  * psind 96 T dp " psing 90 " p dp " p Yo T p Yoo - O
)
(1”100 wPo  OUige 2o Uy _2@@ _ 1 duy, 1% 2 2
at  t psing 90 T . 0 A psind To 0 =TT 9 15 Yoo T 5 Uoon
4 cot ot pg et -
T M0 T p Yo T 2 P Ugoo * TpUggo ¥ Tpo%8 =0,
a
Iuoro “Po  dUgig o w Po weot Iuyio 2. oz L?U_OLI
gt T psing 90 Y, Yo * P Yoo1 T dp T psingd dv T o dp
3 cot ¢ ) _
~ T Ui T 2 o U * Tgupee * ? Tgoobé = 0 ,
a
dug0; wpg  Qugy  2ppwcot @ duy01 1 9ugy 28“002 3
ot * psing 96 e Yo T 9p T psingd 90 o ¢ T p
2,2
t o
cot ¢ cot ¢ Po @” €O
2 =5 Ugpz ¥ 27 p o0 T TeUgeo * o Uggo * T¢0555 =0,

(72)

L (73)




duz00 «fo Uz  20g@ du 399 1 duyyg _l_auzo1 2 2 h
at T osing a0 o Yuo "3 3p T psing 960 "5 ap  * o Y120 T 75 Uyoz
3,2 2,2
6 cot ¢ Po @ Py @ _
Tp Usz0 T 7T p Uzor T 02 e Uigo + Tpuge = 0,
dUg,g wpy  dUgag Do & Py weot @ U4 3 g 1 Iup,,
dt T posiné 99 YT p Yo * P Yir T 8p T psing 98 T p df
4 3 cot ¢
TP Ui T T 5 Yoo * Topugp Y ;
gy wog Ougy,  2pgwcot 94,09 1 9upp  39Ug3 4 3cotg
gt T osing 96 P Yots = dp " psing 80 T p dp T p M2 p  Yoos
cot ¢ o w? cot ¢ _
P27 ugy F Tyugy t 0 Ugey - 0
~ (14)
duy g wpy  dup,  4pgw 2po @ Py wcot ¢ dUyg 2 duiy
dt ' psing 96 T p Yoo tT p Uypo tT 5 U1 = 2735 “psing 90
1%, 6 2 6 2 cot b 2 po @ pg o
p 3p ToYs0 T pYoz T pYa10T T o Unn T plUaro o2 T Yoo tToug e tTouy TO0
dugy, wpy gy, Py @ 2p4 wcot ¢ 4p, wcot ¢ duyy, 9 dug,,
at ‘' osing 80 T p Y t P Yooz ~ P Y20 T 9p T psing 90
2 dug;; 4 4 cot ¢ 6 cot ¢ Py’ @ cot ¢
e dp T oMt T p Yoz T ugzo t Tguge t Tguge t 0 o - 0,
duyoy N wpg  9uyg _ 2p @ _ 2py wcot ¢ _ Iy, 1 9%y 294y, 2
dt psing 49€ o Yoir Je Ujpo = 2 dp " psing 98 T p dp T p Yom
3,2 2,2
6 6 2 cot ¢ 2cot ¢ Pg @ Pg @ p020«2cot¢> ~
To%00s TTpY201 T T 5 Yoe VT 5 U T 02 p JHoor tTpugy ¥ Ty upgo o Y0 ~ OJ

of each of these groups is the sum of the indices for the two lead-off terms. For Equation 72 it is
0, for Equations 73 it is 1, for Equations 74 it is 2. Equations 19 and 37 indicate that the sum of
the indices onu, , shows the order of its size. The equations within any group are also noteworthy
in that the only differentiation operator present operating on terms of the same order as the

In Equation 73 T, 838 = T, (o, 8., 7/2) 8(0-p,) 8(6-6,) 6(¢ -n/2). The common characteristic
2, o
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wp
/ﬁ 6—65-. This situation prompts us to treat the equations by inverting

this operator, recalling that the side conditions are that u,,, = Ofort = Oand that u,,, is periodic
in & with period 2.

lead-off terms is ;; +

In employing the successive approximation scheme previously suggested, first Equation 72 is
considered alone, with the initial approximation u (% = ufy = vy = 0. It is evident that the solu-
tion to Equation 72, subject to the stated side conditions, is uy?’ = 0. This approximation may be
improved by revising the approximation to u,q,, ug;0, Uge;- This is done by solving Equations 73
after setting u{? = 0, where x+y+z = 2, and using the best value for uy, available, ugy = 0.

That is to say, the following equations are solved:

dufL wp du (L 204 w n
100 0 100 Po _ a il
9t * psing 90 T 5 Ygo - T E T, (IOO’ea.’ 2)5(P‘Po)5(9'5a) 5(¢>‘ 2) ;
a=1
auo<110> wpg auo(llo) Pow . ,Voohwcotqﬁ - s
ot T psing d0 T p Yoo T o Yoo1© T "z Ty 385, (75)
a
8u0(011) Woq auo(oll) ?PowCOth W - 5
9t T posing 96 o Yoo© _z T¢0 85
a

The presence of the delta functions on the right foretells their presence in the solution and so it
is postulated that

ux<y12) = Z (1)vxoyozo (0, t)S(p—po) s (e—@a) 8(<1>" 12)

a

Inserting this representation for u (! into Equations 75 gives the following system of equations
for (Vy 000,
xyz

g (1, 000 5 (1), 000 @ ~N
100 100 .
at tw 90 -2 Wvgd = mT,(8) = 'z Aot
==
g (1)y 000 g (1), 600 g
10 010 ir8
1 000 = - = = ir
w )V100 + 3t +w 30 T, (6) E T , (16)
r
P uge g v
ST tw 35 - = ~-T,(6 = - v eir5
Jt a8 ¢ T
r -/

A convenient technique for handling this system is to employ the Laplace transform with respect to
t(7) and the finite Fourier transform with respect to 6(~). In anticipation of this the Fourier series
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for the disturbing force components was inserted on the right of Equations 76. In these series
the coefficients are constants—the Fourier coefficients of T,{ oy, ¢, 7/2), etc. The transformed
equations form a linear algebraic system,

o ~ 1
: 000 > -
(7 +ire) Wy - 20 Dy P = -a = |
(1) 000 T = 1
Vigo t (T Hirw) WyE® = —p =
: (1= 000 - 1
(7 +irw) Voor T Ve r s
which gives
(7 +irw)A + 2w )
T+ 1lrw +
(F 000 = A Fre
100 T [('r +irw)? + 20.)2] '
~wh_ t+ (THirw)pu
gy - ISl C i -
oo T[(T+ira>)2 +2w2}
~ v
(1)=000 - _ . T
>V001 T(7T +irw) )

The variable 7 is the Laplace transform variable counterpart to t, and, similarly, r is the Fourier
transform variable counterpart to 6.

Upon taking the inverse transforms the solution to Equations 75 is found to be:

1_e 1(r—f)wt 1 _ 1=-e" 1(r+t/i)wt o W
- = @@ ird 555
i r - }5) w 2 A i (r + }Fz) w ¢
1- “i(r— /E)wt i — 1- 'i(r'h/i)wt .
ulh = ° =B, — | et0 885 > (78)
1 2 }/_ i }/i) 2 V27 i (r + }/Q) w
B 1 - e—irwt ir6
uo(oll) -7 z Z Ve irw el 888

a r /

where 8, = A, -iy2u, and B, = A +iVIp, .

Now the original value for ug,,, may be improved. The expressions given by Equations 78 are
used in Equation 72 and this is then solved by the technique just employed. However, in the
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present case derivatives of the delta functions will appear on the right because of the presence of

terms like du 1(010)/" p. Consequently, it is necessary to assume

7 i
WZEPW@WWMWMWﬂWWHs

+ Dy 010 554 5 + (1)y 901 ssa'] : (79)

The value as determined by solving Equation 72 is

o = D7) [ (on B e ogompny o(o-02) ofe-3)

a=1 r=-o

(80)
where
A = - R N 1 ilr=V 2yt —Me'“““ _ i teTiret W
r 2 ¥2 rw? 202 4rew? 2Y2w '
1 1 —iimv3 1 .
B = - . i(r=v2)wt + e irot ,
r 2re? (r - ﬁ) 2 y2 w? (r - ﬁ) N 2 2 ro?
_ > (81)
C = - i i’f_é_ - ‘1— e'i(r'\/2-)wt + M e“irwt - 1 te'irwt
’ 2921r%20? r-¥Y2 22 (r—ﬁ) 4r2 2 272 rw !
1 - (1+irwt) e ir®t
p, - LT (rirenem ]
r r‘w

and Kr is the conjugate of A_ with respect to ¥2; i.e., the sign of 12 is changed wherever it occurs
with A . This also holds for B, and C,. Note that the same notation already has been used for B.:
B, = A ~iv2p, and B, = A _+iV2p .

A second order approximation to u,,, may be obtained by the same general procedure, starting
with Equations 74 under the assumption that u., = 0for x+y+z = 3 and using the approximate
values already obtained for v, , for x+y+z = Oand 1. As may be imagined, the labor is con-

siderably greater than it was in the previous discussion.
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In the first order work the formula employed for the distribution function is

m . 77
£ = px Z s(p—po) s(&—ea) 8(¢—‘2_>8(P)8(®-p0w) §(®)

0

u-1
N Gy) (i2) o (i3)
"o Z Ui, (0 b €) 8T (P) B ©@-row) 57 (), (52)
il,i2,13=0
where
- 000§/, _ 578 -0 8(¢>—i)+ 100 54 58 1+, 010 557§ 4y 001 5557 + » - -
Y000 Vooo (,o Po) ( a) 2/ 7 Vooo Vooo Vooo °

a=1

Furthermore, since this is an n-body problem it is apparent that the distribution function must be
of the form

. 1 o ~ " N o - o
£~ om Z reind slp-7. () 5le-8, () s[e-3, (¢ s[p-P, ()] s[e-0, (t)] s[o-0a, ) . (83)

T~
p a Sln¢a
a=1

where 5, (t) etc. are the exact solution functions.

The total mass is found by integrating over all phase space. This would be, from Equation 83,

@

e 27 @ ~
J J | ﬂ[fpzsin¢de®d®dpd0d¢

0 2 v v

27 0 >
= % Tm—wjmj J Jﬂ 5(P-P,) 5(0-6,) s(0-8,) dPd®dd p? sin s (0 -7,) 5(6-8,) 8 (¢-&,) dodd do
Py Sln¢a 0 v 0 e

a=1

- nm .

If the alternative form for the distribution function, Equation 82, is used the integral over all phase
space is

]

7 27 oe] 2 . .
FoJy Jo Jo o

11.dg,13—
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Consequently, the last integral must vanish, so that by using Equation 79

Qo

Upon integrating,

a

In the first order theory this means (refer to Equation 80)that, since the ¢, are inherently
independent,

r

a fact that inspection of Equations 81 verifies.

The item of present interest, the behavior of 5a, is determined from the 6 moment of f. In
order that just one @'a will be obtained, instead of their sum, the ¢ integral is taken between the

limits 0,-cand &, + ¢,

T ’éJa"’E o A%
j J j‘ j]j f80?% sin¢ dP d® dd dp df d¢
0 5{;-5 0

—C0
T AT 4 po AR
a
Z ' 1 ~ ~
mj J.N f Hj T Op?sindd(p -7y 5(0 - 5) 5888 dP d® d® dp dO dop
0 0 Yiy P sin g

1

Ga— €

~

= mf

a

This moment formed by using the alternative representative of Equation 82 turns out to be

dv 010(67 t
. ,
{ee [ 0o ©) = v () = a0 )] - 935 (O t>}.

But the expression in brackets vanishes (see Equations 84 and 85), and so in the first order
theory

F,(t) = 6,(t) - Dvdl (6, t) -

m 27 ®
mzj I I % [v0°°°o°s(p—p0) 5(9-96,) 3(¢—%)+v010‘{,° §' 85 +v o088’ 8+ vy 888 + ] p? sing dp df d
0 Jo Yo Yo
a

2 Bvo%loo (90_, t)
Z [vo%%" (6o t) - o vaso (far €)= 2@t T O (84)

A -2 -1irC. = 0 , (85)

(86)
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In a similar fashion the velocity component in the ¢ direction may be found by taking the ®

moment,
®a (t) = Po @ = (I)VOOIOOO (ea’ t) N (87)

Now these results will be used to determine the growth of asymmetry in the original configu-
ration of n satellites evenly spaced about a circular orbit. Under the perturbational forces the
spacing becomes irregular. Various measures of this asymmetry could be devised; the following

is used here:

Q) = n [(Em-%a)—(f«m-(,-a)]?, (“1 - ;1,27;) ,
(88)

a=1

which compares the spacing between successive disturbed satellites with that between successive
equally spaced satellites. Such a measure is independent of rigid rotation and, therefore, inde-
pendent of the choice of the satellite corresponding to « = 1.

Equation 86 may be written

65, = é“a—Z W (the * (89)

where

ey = [Z W (e“%*l—e“‘qa)]2

n

1t

2
[ W eirwt (1~eir277/n) eir(ZG"T/n)J
; r
r
a=1

The factor 1-e'¢?/yanishes, in particular, for r = 0; therefore, the range on the inner summa-

tion sign can be taken without this value for the index. Then

n

Qt) = W eirot (1 _ei(rZ‘"/n)) eir(2a7/n) E W_ oiset (1 __ei(5277/n)) eis(2ar/n)
a=1 r#0 s70
n
- ? E W ws eil(r¥s)et (1 _ ei(r277/n)) (1 _ ei(szw/n)) % eilr*s)(2a7/n)
r70 s#0 a=1
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The geometric series

e i(r+s )2am/n)

it

a=1

vanishes unless r = - s, in which case it is evidently equal to n. Therefore,

Q(t) = n Z L (1 - eir(277/n)) (1 - e-ir(2'n/n))
r?o
27
= 2n Z wow_ (l—cos rn ) . (90)
r¥0

The special case (the case of interest) will be considered where the disturbing force com-
ponents T, {0y, 6,, 7/2) and T, (Po: O 7/2) are even and odd functions of 6,, respectively. That

o
is to say, since their complex Fourier coefficients are indicated by A and »_, respectively, we
have A_, = A and p. = -u,. Furthermore, since the complex Fourier series

8 irf
AL e'le and E woe  °
T

must represent real-valued functions, the noted symmetries demand A_to be pure real and »_ to
be pure imaginary. For convenience we may write o, = ~ic, so that

’Br :Kr—iﬁ'u'r :}\r_ﬁgr’

which is pure real since A, and o_ are pure real. Simple formulas connect these coefficients for
positive and negative indices,

B, = B, = At V20,
(91)

™
1
1
o
Il

>\r - ﬁor

Similarly, from Equations 81

c.. = Cr, and C = Cc*.
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“The asterisk represents the conjugate with respect to i (the complex conjugate), whereas the bar
represents the conjugate with respect to }/5

From these relations a simple form for W_W__and therefore for Q may be obtained,

W, = o (8,0, 4B, E) o (B, Co, 4B, )

1

= (s.c,+B.2) (BT +8.c.)

0

hs

= 5 (s.c 1B.C) (B C +B.C)"

0

©

1 —_ —
= EI'BrCr+’BrCrI2 *

It is a straightforward matter to compute W_W__ from this formula in terms of t and the
Fourier coefficients A and o . The result, when incorporated into Equation 90, gives

2 2, [2mr, - (2 +2) o]
i L m ]
Q) = 2ot 1-cos | 2 @ - 3 (r2-2) wt sin rot

2Y2o, (A, - 1o, . (Bré~6r%+16r2) N2+ (- 1205 +8r% - 321) A o + (2r® +8r% + 16)0 2
+ YW wt 51n'yr2_o.)t+ ot (r2-2)2 A
9 (rxr _Ur) (mr _ 2”;-) >\r2 - Q‘Trz 2(r>\r _Ur).[z")‘r - (r2 + 2) O'J
- 2 (r2—2) cos ﬁwt+m cos 2Y2 wt + ) (r2‘2) cos rwt
(r, =720 [or, - (¢ 2) o]
- rz(r—ﬁ) (r2-2) cos (r—ﬁ) wt
N
(Kr + ﬁar) [2r>\r - (r2 + 2) o—r]
cos (r + ﬁ) wt ™, (92)

r? (r+ﬁ) (r2—2)

It is not immediately apparent from the form of this expression that it vanishes whent = 0,but

such is the case.
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The first three terms in the braces in Equation 92 ultimately provide the growth to Q(t). The
bulk of the contribution is apt to come from the first few coefficients o , which are those for the
¢ component of the disturbing force.

Let us examine the case of the earth and a satellite of the Echo type. The potential due to the
earth's gravitational field is

NG

1 1
u = 3 [1‘]2‘2;_2 (39052(}5,3‘1)‘]3% (5cos3¢e—3cosq§e)+---] ,

where J, and J, are numerical constants, the force field is the negative of the gradient of U, and
¢, is measured from the North Pole. Suppose the satellite's undisturbed orbital plane intersects
the equatorial plane along the y axis and the orbital plane lies above the positive x axis. Let the
declination of the sun relative to the earth's equator be &, and the sun's coordinates in the o, 9, ¢
system (i.e., the system based on the undisturbed satellite's orbit) be K, 0, ¢. Then

cos¢p, = cosfsingsin (¢0——727+81)+cosq5cos (qﬁo—%JrSl)

With the force due to the solar radiation pressure falling off inversely as the square of the
distance, the potential is

. . -1/2
vV = k [p2 + K2 - 20K (cos fsingsing, + cos ¢ cos qSO):l

Upon taking the gradient of the two potentials and evaluating at the point (o,, &
components of the total disturbing force per unit mass are found to be

17 2) the

a?

LA U 3 2 . 2 ki
T, (,00, [N 2) = MG 5;—4— J, |3cos® 0, sin (¢o -5+ 81) -
0

k . ; 2 . 2 Fo
--K—2 cos 8, sing, + (3cos g, sin q50—1) K ,

L 3 L 15 i
T, (po, . '5) = MG I:P—4 J,cos &, sin 6, sin? (¢0 -5+ 51) + 2—pos J; cos? 6, sinf, sin3 (¢0 -3t 51)
)

3 5 . [
- 2—,005 J;sind, sin (d>0— ) +81)
ko . . Lo
+ ) sin 8 sin¢y \1 +3cos O, sing, K/
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. A A
+J, cos 8, sin (d)o— 2 +81) cos (¢0— ) +81)

7 _ 3
Ty \ros Oas j) = MG | —+
Po

) 2p305 Jycos (f0-7 ¢ 51)}

k Po
JrK—zcosqﬁ0 1+3cos@, sin¢0T

In these formulas the solar radiation terms were expanded in powers of o/K and terms of a
higher degree than the first were neglected. The equations can be written in the form of (finite)
Fourier series in ¢, by employing trigonometric identities to convert powers of the trigonometric
functions to functions of multiples of the angle. For the o-direction component

< , l) _ 3 E s k 3P0 Po
To\Po- % 2) ~ 204 GMJ, [7 sin (‘750_ 2 +51)_1 T g2 \2 kK s "X

2 15 us . s k.
+ '/ZJ—SGMJ3 4 sin (qbo— 3 +51) -3sin (qbo- 2 +51> - K2 sing, pcos 0
0

9 . kud Heo

+ ?04 GMJ, sin <¢>0— 2 +81) - K3 sin® ¢,| cos 20,
5 .3 Kl

+ 2/005 GMJ3 sin (qu— 7t 81) cos 36,

if -i
Since cos &, = (e *te 6“)/2, the first term is A, %, is half the coefficient of cos §,, A, is half
the coefficient of cos 26, A, is half the coefficient of cos 3¢, and A, = x__for r = 1, 2, 3.

Similarly,

ki k
s GMJ, sin (qﬁo"'z‘ + 51> +§'2‘sind>o} sin 6

3 ., 7 ko .

+ 2,004 @MJ, sin (c,bo- 7 * 51) K3 sin‘ @, | sin 26
15 . o .

+ [—8,07&“]3 sin® (qSO- o+ 51>J sin 3(9a s

which makes it plain that », = 0, x, is half the coefficient of sin 6, divided by i, etc., and u_ = -u_,
forr = 1, 2, 3.
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As a numerical example we shall take ¢, = 137.3 degrees, 5, = 0 degrees, p, = 1-1/4 earth
radii, and k/K? = 4.75 X 10™® c¢m per second per second. These figures approximate those for
Echo I (1960 .1). With these data, from the Fourier expansions for T, and T, the values for the
coefficients are found to be:

Ay = -0.6x 10'6,00 w? o, = +2.8x 10'6;)0 «?
A, T +420x 107%p;a?, o, T +280x107%p,w?,
Ay T =0.6x 1078 pg?, oy T —0.4x 1078 p  W? .

Of immediate note is the fact that the second coefficient in each set dominates the others. Be-
cause of this, the formula for the measure of asymmetry, Q, to a sufficient approximation, can be

written

Q = 1078 (—28.875'1:1ﬁ7—40.7cosﬁ7+5.090032)’57

+20.472 +35.6) ,

where a configuration of thirty (n = 30) satellites is assumed and «t = 7., This result shows that
Q is essentially increasing as 72 but that there is oscillation about this parabolic curve of period
¥27in 7. The amplitude of these oscillations is so small, however, that the curve for Q is mono-
tone increasing. Therefore, this first order theory for this example indicates that the asymmetry
in the configuration steadily grows. Naturally, for longer periods of time a second order theory
would be required to show whether this trend continues or reverses.

(Manuscript received April 6, 1964)
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